Cheap Sine with < 10~* Error

Bernd Kohler, binér industrie-informatik

ABSTRACT. We are looking for a computationally cheap approximating polynomial for the
sine and cosine functions. We start from the TAYLOR expansion, restricing us to three terms,
computation being done by z [1 + 22 (B + Cxz?)] or z [A+ 2 (B + C2?)]. We want to stick
to sin0 =0 and sing = 1. Furthermore we do not want to need a division, like BHASKARA’s
formula or using PADE approximants do.

1. Starting from Taylor

The series expansion for sinx is

e n p2n+l
sinx = E
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and so the first few terms are
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What can we achieve restricting ourselves to 5th order (3 terms)?
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fo() can be computed by a program with four multiplies incl. the one to get 2. Our error will be
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which is monotonically growing inside the interval 0 <z < g - see the plot beneath. So the maximal

fg(xn)

100 Ed(xri")‘\i\:

0.8+
0.6+
0.4+

0.2+

0.3 0.4 0.5 0.6 0.7
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error is EO(%) =0.0045249 which amounts to 0.45 percent. That’s not too bad, but the error is
concentrated near % In addition, feeding a value >1.0 to an arcsin or arccos function might be
harming. Can we improve without entering higher orders? Let’s look at some basic propeties of

the sine function;

sin0=0, sin%:l, (2)
sin'0=cos0=1, sin’%:cos§:0.
And let’s look at a function
fx)=x—az®+bax®=2(1—22(a—b2?)), (3)

fl(x)=1-3ax?>+5ba™.

f(0)=0 and f'(0)=1 we get “for free”, irrespective of the values for a and b. Then let’s choose a
and b in such a way that

I JIL
f(g)zl, f(g)*a
We get
a:%(277—5), b=10 (x - 3)
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As the plot shows, we end up with a maximal error of about 0.04 %, 1/10 of what we got from
fo(z). Explicitly we find the error maximim at

Tmaxerr = 0.3263932783214713 7,
Emaxerr - f(xmaxerr> —sin Lmaxerr — 3.945343147131463 x 1074.

What about arguments outside the interval 0 <z < g? As is sinx, our approximating f(z) is an
odd function: f(—x)=—f(x). So we got covered x range ,g <z < % Furthermore we have

sin(z + ) =—sinz , Cosxzsin(ac +%>,

which, together with the fundamental 27 periodicity, gets us fully covered for cosine as well as sine
throughout the argument range —oo <z < co.
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Can we do better by spreading the error more evenly in our interval? Let’s look at a slightly
different approximating function, keeping the three term restriction

g(x)=Az+Bz3+Ca® (4)

g'(x)=A+3Bz*+5Cz*

If we want to keep all the properties of the sine function given in (2), then ¢’(0) =1, so A=1. With
this for the rest we are back at the determination of the two constants in (3). So we will have to
let go some of our requirements, maybe best those concernig ¢'(x). We will stick to A=1; so we
keep the same complexity as with f(z). Hence we are now looking for optimal B and C' in

g(x)=2+Bx3+CaS=2(1+22(B+C2?)).

The condition g’ (g) =0 we will replace by the insertion of a third sample point z; between zero
and g at which g(x1) hits sinz;. In summary

g(x1) = sinmzy
bis

o(5) =1

Coefficients B and C will now depend on our choice of ;.
x“{’ x“;’ ( B(l‘l) [ sinz;—x1
\ C(z1) ) 1-=
T\3 5
() (3) ?

_ 7w 32a
B(z1) \ _ 1 z} wd sinz — 1 (5)
C(z1) 7435%—772 4 32 | lfg

Our error function now is

E(z,z1)=g(z,71) —sinx =z + B(z1) 2%+ C(z1) 2° — sin .

Here is a plot of it for two different x;.
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The error function’s derivative is
d 4 2
&E(x,xl) =1—cos(z)+5C(z1)z*+3B(z1) z
Hence the extrema of E(x,xz1) along the positive axis are where

diXE(x,xl):lfcos (z) +3B(x1) 22+ 5C(z1) 24 =0, (6)

Let these roots of (6) be at z, and at xp - we can only find them numerically, but both are
uniquely determined by the choice of 1, so we can write z,(x1) and xp(z1). Then the two extrema
themselves have error values

E(24,21) = T4 —sinz, + B(x1) 22 4+ C(z1) 22, (7)
E(xy, 1) = 2 — sinzp + B(x1) 23 + C(21) 23

Following CHEBYSHEV'’s equioscillation theorem!' and because one must be a maximum and the
other one a minimum, the optimal 1 will be where E (x4, 1)+ E(zp,21) =0. Thus we have to solve

To(m1) +ap(21) + B(21) (00(21)2 + 25(21)3) + C(21) (w0 (21)° + 20(21)%) =sinwo(z1) +sinazp(21)  (8)

for the optimal x;. As already (6) has to be solved numerically, this refers to (8) as well. A
small C program has been written to do this job. Roughly it did

With a given x1;
Compute B and C from (5);
Find z, and x3 as the roots of (6);
Evaluate the error at x, and z; from (7);
Repeat the sequence above for some range of x1, tracking the sum of errors to find it’s minimum.
Start with a broad range and big steps for x1, then refine.

The results are as follows. Error sum = 0.000000000000e+00 for

1= 1.193500035027 = 0.379902860310 7,

xp = 0.857212658775=0.2728592638507m,  E(xp, 1) =0.000140012094

xq=1.428536909037=0.4547174209257, E(x,, 1) =—0.000140012094
B(z1) =—-1.660059992381e — 01, C'(z1)="7.592417840901e — 03.

Thus in summary our approximating function gets

g(z) = z—1.660059992381 x 10~! 23 + 7.592417840901 x 103 z°
= [l —22(1.660059992381 x 10~! +7.592417840901 x 103 z2)]

and we end up with a maximal error of £0.14 0/00. We see the distribution of the error in the plot
below.

1. See http://www.math.uiowa.edu/~jeichhol/qual prep/Notes/cheb-equiosc-thm _2007.pdf, or
https://www.maa.org/sites/default/files /images/upload library/4/vol6/Mayans/Contents.html.



Bernd Kohler, binér industrie-informatik 5

0.2

Requesting ¢’(0) =1 (as sin’0=1) has automatically led to E’(0) =0. So the error function
starts very softly from z =0. Can we achieve smaller absolute extrema by allowing the error to
rise more sharply? This means dropping ¢’(0) =1, so we are back to the full g(z) from equation
(4), and to this list of requirements:

(0) =0,

T

g 5 =1,

Q

—

g(x1) = sinay,
E/(xa> = 07 E/(xb) = 07
E(xzy)+ E(xp) = 0.

This will now be attacked - with a little bit more help by PAFNUTY L. CHEBYSHEV.

2. Chebyshev

Since we have to omit A =0 and therefore have to find three coefficients, we may profitably omit the
single interpolation node z; inside the zero to 7 /2 interval, and use two nodes z; and x5 instead.
This gives us a system of three equations

g(x1) = sinay, (9)
g(zcrg) = sinxg,
o(5) =t

How to know the optimal z1 and z5? To search like above “by brute force” seems impractible. Here
theory comes in and tells us that the Chebyshev nodes? may at least be a good start. These nodes
are given by the appropriately scaled zeros of a Chebyshev polynomial (of the first kind). The one
of these that has four zeros inside the closed interval [0,1] is T7(z) - it has seven zeros in [-1,1].

Tr(z) =6427 —1122° +56 2% — T,
and it is obeying the functional equation

Tr(cos &) =cos(7€).

2. See https://en.wikipedia.org/wiki/Chebyshev nodes.
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From this we know the zeroes and that ones in [0,1] are at

mm
—_ = 1.
cos—= , M 7,5,3,

We have to scale Tr(z) in such a way that the zeros get mapped to 0, 1, 22, and % That is, we
have to stretch = by a factor ﬁ, and we get
14

cos 3T T T 3
14 2
- 29 (_>__ ,
T . 517:1 5 ( cos” | 2)7r
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Given the interpolation nodes, lets solve equations (9).

1 13 @® A

sinxq
Ty x93 m® || B |=| sinzsy |, (10)
™ ™\ 3 ™\5 C’ 1
7 (3 (3)
308 (422 — n2 343 (402 — 72
_mlzy(4ey—7?)  wlai(dri—77) x?x%(w%fﬁ) .
A 1 32 32 sinxy
_ L wxo (16 x5 — 7t) w1 (16 21 — %) 4 4 .
B —D 32 32 —X1 T2 (1‘2—1'1) | smxo |,
C 2 2
Txo (4x3 —m2) mxy (42t —m2) 2 2
3 3 z1 22 (3 — 71)

where D is the determinant of the matrix on the left side of equation (10). Numerical evaluation
yields the result

A 0.9996436199979504
B |=| —0.1655633385816708 |,
C 0.007471551686678179

and so we have from equation (4)

g(z) = 0.9996436199979504 x + —0.1655633385816708 2 + 0.007471551686678179 25,
= 2 (0.9996436199979504 +22 (0.007471551686678179 22 — 0.1655633385816708)).

Here g(x) is plotted together with it’s error function E(zx).
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The extrema of E(x) are given by

2, =0.1139588721403732 7, E(z,)= —8.187880151318966 x 1075,
xp=0.3194692485308592 7,  E(x;) = 8.08648074913515 x 1075,
2. =0.4619395981114392 7w,  FE(z.)=—7.962173707186382 x 10~°.

As we see, we do not have perfect equioscillation. However the differences seem bearably small.
To approach equioscillation more perfectly, techniques of the REMEZ algorithm?® may be used for
shifting x4, Ty, . iteratively to their optimal positions. Here this is left to the inclined reader.

bk, binir, 18Mar2020
bk@binaer.com

3. See https://en.wikipedia.org/wiki/Remez _algorithm.
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