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ABSTRACT. We are looking for a computationally cheap approximating polynomial for the
sine and cosine functions. We start from the Taylor expansion, restricing us to three terms,
computation being done by x [1 + x2 (B +Cx2)] or x [A+ x2 (B +Cx2)]. We want to stick
to sin0=0 and sin �

2
=1. Furthermore we do not want to need a division, like Bhaskara's

formula or using Padé approximants do.

1. Starting from Taylor

The series expansion for sinx is

sinx=
X
n=0

1
(−1)nx2n+1
(2n+1)!

;

and so the first few terms are

x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
+ � � �

What can we achieve restricting ourselves to 5th order (3 terms)?

f0(x)=x− x3

3!
+
x5

5!
=x

�
1−x2

�
1
6
− 1

120
x2
��

(1)

f0(x) can be computed by a program with four multiplies incl. the one to get x2. Our error will be

E0(x) = f0(x)− sinx=
x7

7!
− x9

9!
+
x11

11!
− � � �+ � � �

which is monotonically growing inside the interval 0�x� �

2
- see the plot beneath. So the maximal
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error is E0(
�

2
) = 0.0045249 which amounts to 0.45 percent. That's not too bad, but the error is

concentrated near �

2
: In addition, feeding a value >1.0 to an arcsin or arccos function might be

harming. Can we improve without entering higher orders? Let's look at some basic propeties of
the sine function;

sin 0= 0; sin
�
2
=1; (2)

sin0 0= cos 0= 1; sin0
�
2
= cos

�
2
=0:

And let's look at a function

f(x)=x− a x3+ b x5=x (1−x2 (a−b x2)); (3)

f 0(x)= 1− 3 ax2+5 b x4:

f(0)=0 and f 0(0)= 1 we get �for free�, irrespective of the values for a and b. Then let's choose a
and b in such a way that

f(
�
2
)=1; f 0(

�
2
)= 0:

We get

a=
4
�3

(2�− 5); b=
16
�5

(�− 3) :

As the plot shows, we end up with a maximal error of about 0.04 %, 1/10 of what we got from
f0(x). Explicitly we find the error maximim at

xmaxerr = 0.3263932783214713�;
Emaxerr= f(xmaxerr)− sinxmaxerr = 3.945343147131463� 10−4:

What about arguments outside the interval 0� x� �

2
? As is sin x, our approximating f(x) is an

odd function: f(−x)=−f(x). So we got covered x range −�

2
�x� �

2
. Furthermore we have

sin(x+�) =−sinx ; cosx= sin
�
x+

�

2

�
;

which, together with the fundamental 2� periodicity, gets us fully covered for cosine as well as sine
throughout the argument range −1�x�1:
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Can we do better by spreading the error more evenly in our interval? Let's look at a slightly
different approximating function, keeping the three term restriction

g(x)=Ax+Bx3+Cx5 (4)

g 0(x)=A+3Bx2+5Cx4

If we want to keep all the properties of the sine function given in (2), then g 0(0)=1, so A=1: With
this for the rest we are back at the determination of the two constants in (3). So we will have to
let go some of our requirements, maybe best those concernig g 0(x). We will stick to A=1; so we
keep the same complexity as with f(x). Hence we are now looking for optimal B and C in

g(x)=x+Bx3+Cx5=x (1+x2 (B+Cx2)):

The condition g 0
( �
2

�
= 0 we will replace by the insertion of a third sample point x1 between zero

and �

2
at which g(x1) hits sin x1. In summary

g(x1) = sin x1
g
�
�

2

�
= 1

Coefficients B and C will nowdepend on our choice of x1:0BB@ x1
3 x1

5( �
2

�
3
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2

�
5

1CCA:� B(x1)
C(x1)

�
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1− �

2

!

�
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�
=

1

4 x1
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0BB@ −�2
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3

32x12

�3

4
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3 − 32

�3

1CCA: sinx1−x1
1− �

2

!
(5)

Our error function now is

E(x; x1) = g(x; x1)− sinx=x+B(x1) x
3+C(x1)x

5− sinx:

Here is a plot of it for two different x1.
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The error function's derivative is

d
dx
E(x; x1)= 1− cos (x)+ 5C(x1)x4+3B(x1)x2

Hence the extrema of E(x; x1) along the positive axis are where

d
dx
E(x; x1)= 1− cos (x)+ 3B(x1)x

2+5C(x1)x
4=0; (6)

Let these roots of (6) be at xa and at xb - we can only find them numerically, but both are
uniquely determined by the choice of x1, so we can write xa(x1) and xb(x1). Then the two extrema
themselves have error values

E(xa; x1)=xa− sin xa+B(x1)xa
3+C(x1)xa

5; (7)
E(xb; x1)=xb− sin xb+B(x1)xb

3+C(x1)xb
5:

Following Chebyshev's equioscillation theorem1 and because one must be a maximum and the
other one a minimum, the optimal x1 will be where E(xa; x1)+E(xb; x1)=0: Thus we have to solve

xa(x1)+xb(x1)+B(x1)(xa(x1)
3+xb(x1)

3)+C(x1) (xa(x1)
5+xb(x1)

5)= sinxa(x1)+sinxb(x1) (8)

for the optimal x1: As already (6) has to be solved numerically, this refers to (8) as well. A
small C program has been written to do this job. Roughly it did

With a given x1;
Compute B and C from (5);
Find xa and xb as the roots of (6);
Evaluate the error at xa and xb from (7);

Repeat the sequence above for some range of x1, tracking the sum of errors to find it's minimum.
Start with a broad range and big steps for x1, then refine.

The results are as follows. Error sum = 0.000000000000e+00 for

x1= 1.193500035027= 0.379902860310�;
xb= 0.857212658775=0.272859263850�; E(xb; x1)= 0.000140012094
xa= 1.428536909037=0.454717420925�; E(xa; x1)=−0.000140012094

B(x1) =−1.660059992381e− 01; C(x1)= 7.592417840901e− 03:

Thus in summary our approximating function gets

g(x) = x− 1.660059992381� 10−1x3+ 7.592417840901� 10−3 x5

= x [1−x2 (1.660059992381� 10−1+7.592417840901� 10−3x2)]

and we end up with a maximal error of �0.14 /0 00. We see the distribution of the error in the plot
below.

1. See http://www.math.uiowa.edu/~jeichhol/qual prep/Notes/cheb-equiosc-thm_2007.pdf, or
https://www.maa.org/sites/default/files/images/upload_library/4/vol6/Mayans/Contents.html.
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Requesting g 0(0) = 1 (as sin0 0 = 1) has automatically led to E 0(0) = 0: So the error function
starts very softly from x= 0. Can we achieve smaller absolute extrema by allowing the error to
rise more sharply? This means dropping g 0(0)= 1, so we are back to the full g(x) from equation
(4), and to this list of requirements:

g(0) = 0;

g
�
�

2

�
= 1;

g(x1) = sinx1;
E 0(xa)= 0; E 0(xb)= 0;

E(xa)+E(xb) = 0:

This will now be attacked - with a little bit more help by Pafnuty L. Chebyshev.

2. Chebyshev
Since we have to omit A=0 and therefore have to find three coefficients, we may profitably omit the
single interpolation node x1 inside the zero to �/2 interval, and use two nodes x1 and x2 instead.
This gives us a system of three equations

g(x1) = sinx1; (9)
g(x2) = sinx2;

g
�
�
2

�
= 1:

How to know the optimal x1 and x2? To search like above �by brute force� seems impractible. Here
theory comes in and tells us that the Chebyshev nodes2 may at least be a good start. These nodes
are given by the appropriately scaled zeros of a Chebyshev polynomial (of the first kind). The one
of these that has four zeros inside the closed interval [0,1] is T7(x) - it has seven zeros in [-1,1].

T7(x) = 64 x7− 112 x5+ 56x3− 7x;

and it is obeying the functional equation

T7(cos �)= cos(7 �):

2. See https://en.wikipedia.org/wiki/Chebyshev_nodes.
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From this we know the zeroes and that ones in [0,1] are at

cos
m�
14

; m=7; 5; 3; 1:

We have to scale T7(x) in such a way that the zeros get mapped to 0, x1, x2, and
�

2
. That is, we

have to stretch x by a factor �

2 cos �

14

, and we get

x1 =
cos 3�14
cos �

14

�
2
=

�
2 cos2

�
�
14

�
− 3
2

�
�;

x2 =
cos 5�14
cos �

14

�
2
=

�
8 cos4

�
�
14

�
− 10 cos2

�
�
14

�
+
5
2

�
�:

Given the interpolation nodes, lets solve equations (9).266664
x1 x13 x15

x2 x23 x25

�

2

( �
2

�
3
( �
2

�
5

377775:
24 A
B
C

35=
24 sinx1

sinx2
1

35; (10)

24 A
B
C

35= 1
D

0BBBBBBBB@
−�3 x2

3 (4 x2
2− �2)

32
�3 x1

3 (4x1
2−�2)

32 x1
3x2

3 (x2
2−x12)

�x2 (16 x24−�4)
32 −�x1 (16x14−�4)

32 −x1x2 (x24−x14)

−�x2 (4 x2
2−�2)
8

�x1 (4x1
2−�2)
8

x1x2 (x2
2−x12)

1CCCCCCCCA:
24 sinx1

sinx2
1

35;
where D is the determinant of the matrix on the left side of equation (10). Numerical evaluation
yields the result 24 A

B
C

35=
24 0.9996436199979504
−0.1655633385816708
0.007471551686678179

35;
and so we have from equation (4)

g(x) = 0.9996436199979504x+−0.1655633385816708 x3+ 0.007471551686678179x5;
= x (0.9996436199979504+x2 (0.007471551686678179 x2− 0.1655633385816708)):

Here g(x) is plotted together with it's error function E(x).

6 Cheap Sine with < 10−4 Error



The extrema of E(x) are given by

xa= 0.1139588721403732�; E(xa)=−8.187880151318966� 10−5;
xb= 0.3194692485308592�; E(xb)= 8.08648074913515� 10−5;
xc= 0.4619395981114392�; E(xc)=−7.962173707186382� 10−5:

As we see, we do not have perfect equioscillation. However the differences seem bearably small.
To approach equioscillation more perfectly, techniques of the Remez algorithm3 may be used for
shifting xa, xb, xc iteratively to their optimal positions. Here this is left to the inclined reader.

bk, binär, 18Mar2020
bk@binaer.com

3. See https://en.wikipedia.org/wiki/Remez_algorithm.

Bernd Kohler, binär industrie-informatik 7


	1. Starting from Taylor
	2. Chebyshev

